

Devoir de contrôle N° 2 Sciences physiques

2^{ème} Sc 1 et 2 Durée : 2H

Date: 03-02-2010

Chimie: (8 points)

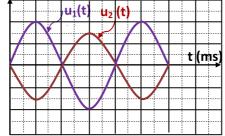
On prépare deux solutions aqueuses (S_1) et (S_2) de même volume V = 250 ml, en dissolvant respectivement dans l'eau 5,35g de chlorure d'ammonium $NH_4C\ell$ et 6,5g de chlorure de fer III $FeC\ell_3$.

- 1- Les solutés $NH_4C\ell$ et $FeC\ell_3$ sont des électrolytes forts.
 - a- Définir un électrolyte.
 - b- Quelle est la différence entre un électrolyte fort et un électrolyte faible ?
- 2- Calculer les concentrations molaires C_1 et C_2 des solutions (S_1) et (S_2) .
- 3- a- Ecrire l'équation de dissociation ionique dans l'eau de NH₄Cl.
 - b- Déduire les molarités des ions NH_4^+ et $C\ell^-$ présents dans (S_1) .
- 4- a- Ecrire l'équation de dissociation ionique dans l'eau de FeCl₃.
 - b- Déduire les molarités des ions Fe^{3+} et $C\ell$ présents dans (S_2) .
- 5- On mélange les deux solutions (S_1) et (S_2) et on obtient une solution (S).
 - a- Déterminer les nouvelles molarités des ions NH₄⁺, Fe³⁺ présents dans (S).
 - b- Exprimer $[C\ell]$ en fonction de C_1 , C_2 et V puis la calculer.

On donne: $H = 1 \text{ g.mol}^{-1}$; $N = 14 \text{ g.mol}^{-1}$; $C\ell = 35,5 \text{ g.mol}^{-1}$ et $Fe = 56 \text{ g.mol}^{-1}$

Thysique: (12 points)

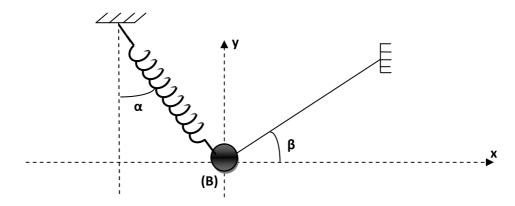
Exercice N° 1 (4,5 points)


On réalise le circuit électrique suivant :

A l'aide d'un oscilloscope convenablement branché au circuit, on visualise respectivement les tensions $u_1(t)$ et $u_2(t)$ de la figure ci- contre :

Sensibilité verticale: 10 V/div

Base de temps : 5ms /div


- 1- Déterminer la période T et déduire la fréquence N de chaque tension.
- 2- a- Déterminer l'amplitude de chaque tension.
 - b- Calculer le rapport de transformation η et déduire l'effet du transformateur.
 - c- Quelle l'indication du voltmètre?
- 3- la puissance thermique dégagée par le résistor est P = 45 W. Déterminer la valeur R de la résistance du résistor.

Exercice N° 2 (7,5 points)

Une bille (B) de poids $\|P\| = 2$ N est suspendue par un ressort de raideur K, faisant un angle α avec la verticale, et un fil de masse négligeable faisant un angle β avec l'horizontal.

Lorsque la bille est en équilibre, l'allongement du ressort est $\Delta \ell$ = 1,72cm et l'angle α = 30°.

- 1- Faire le bilan des forces extérieures exercées sur la bille (B).
- 2- Ecrire les conditions d'équilibre de (B).
- 3- a- Trouver une relation entre l'intensité $\overrightarrow{T_1}$ du fil et l'intensité $\overrightarrow{T_2}$ du ressort. b- Etablir une relation entre $\|\overrightarrow{T_1}\|$, $\|\overrightarrow{T_2}\|$ et $\|\overrightarrow{P}\|$.
- 4- Calculer $\|\overrightarrow{T_1}\|$ et $\|\overrightarrow{T_2}\|$ pour $\beta = \alpha = 30^\circ$.
- 5- Déduire la constante de raideur K du ressort.

On donne : cos (30°) = 0,86 Sin (30°) = 0,5